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Abstract

We present a complete and exact approach for planning a feasiblepath for an arbi-

trary (non-convex) polyhedral subassembly (robot),R, translatingamongst arbitrary

(non-convex) polyhedralobstacles,@. This isthe FeasiblePathproblem. Our algorithm

can be used to determine whether a pairof non-convex subassemblies can be separated

by a sequence offine-motionand, possibly,contact-constrainedtranslations,even when

the amount offreespace tends to be severlylimited.The ShortestPathproblem entails

finding the shortest feasible path. We present the _D Window Corner (WC) algorithm,
which is a novel solution to both problems for the case of translational paths in two

dimensions (the robot or obstacles are not required to be simply connected), followed

by the 3D Window Corner algorithm, for feasible paths.

The Polyhedral Cone Representation (PC'R) is introduced to efficiently represent the

geometric constraints between the boundaries of R and _, and as a basis for fast collision

avoidance checks. We introduce the concept of Window Corners in the Polyhedral Cone

Representation (7)C_) and this results in reducing the search space. The Polyhedral

Cone Obstacle Representation (7_C07_) transforms the problem (in E 2 and E3), into

that of a point moving amongst a collection, O(m), of convex obstacles. The "PCO_ is

a constructive representation of the set of contact configurations between R and _. In

comparison, the worst-caae number of vertices in the B-rep. of the C-space obstacles is

O(m _) in 2D and O(m 3) in 3D, and requires the same order of time to construct. [n
addition, contact-constra/ned, feasible motions, which lie on surfaces without interior

pointswillnot be accessiblein a typicalB-rep. of the C-spaceobstacles.

In two dimensions, a Window Graph with k nodes and O(k 2) edges, isbuilt,and

the shertestpath found, in O(/:mlog(m)) time where m isthe product of the number

of verticesdescribingthe robot and obstaclesrespectively,/:= O(m) in the worst case

and I __/r_ (m + 2). The nodes of the W-Graph correspond to a subset ofthe convex

vertices of the C-space representation. In three dimensions, the Window Corner (PVC)

algorithm constructs a Window Edge ON£) - Tree and solves the FeasiblePath problem,
in worst-case time O(mS). Our approach finds Window Edges, which correspond to a

subset of the convex edges ofthe C-spaceboundary, and tracesa path through Window

Corners.

We have implemented and tested the Yi/C algorithms and examples from robot-

independent assembly sequence planning are presented in this paper. The 3D PVC

algorithm searchesa finitesearchspace,made l_oesibleby the use of Window Corners,

and both the 2D and 3D versionsare attractiveforrapid implementation in roboticand

assembly sequence path planning domains.
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1 Introduction ....... ....

We present an algorithm for solving the FeasiblePath problem for the case of a polyhedral

subassembly (robot), R, translating amongst polyhedr_ obstacles, _, in order to attain a

pre-specified goal configuration. The robot a.nd obst-a_cies_-re described by their bounding

faces. The algorithm is complete and exact, in that it can find fine-motion paths and feasible

translations, which may be entirely constrained by contacts. Our algorithm can be used,

during robot-independent Assembly Sequence Planning [4], to determine the separability

(or assemblability) of a pair of non-convex polyhedral subassemblies. In this case, the
"robot" and "obstacles" each correspond to a subassembly. The robot corresponds to the

moving subassembly. Krislanan an clSanclers0n [5] study theassembiy path pianning problem

and present algorithms to analytically determine all feasible straight-line directions for
automatic assembly, by reasoning about the geometric constraints between subassemblies.

Wilson and RAt [18] describe rules to reason about the feasibility of a disassembly, based on

the outcome of previous disassembly tests.

In an Assembly Sel_uence Planning (ASP) environment, the amount of free space tends
to be severely limited. While many path planners oriented towards:mobile robot navigation

have simplified the problem by modelling the robot as a disc, the method described here

considers an arbitrary polyhedral, constraine d workspace_hichwill render the disc-model

inadequate. Algorithms which achieve fast performance by using approximate representa-
tions of the obstacles or the free space are no longer guaranteed to find a feasible path if one

exists. In our approach, _he robot and obstacJes are described as a collection of polygons

(represented by edges) or polyhedrons (represented by faces), in two and three dimensions,

respectively. Note that the description is not required to be the precise boundary repre-

sentation of the objects. We require that the algorithm be correct and complete, in that

it should be guaranteed to find a path if one exists, and that every path reported should

indeed be feasible.

We solve the FeasibiePath problem in a hierachical manner. We first determine whether

some incremental motion is possible, by analyzing all the contacts between the robot and

the obstacles. We then test for the existence of a straight-line path to separate a pair of

subassemblies. Finally, the algorithm searches for paths with multiple translations. Deter-

mining the feasibility of incremental motion, requires analyzing all the contacts between R

and _, and can be done rapidly.This testisindispensable,sinceitservesas a necessary

conditionfor the existenceof a feasiblepath. We expect that searchingfora straJght-Une

translationalpath,can be accomplished by a fastalgorithm,whilesearchingforpaths with

multipletranslationsand forpaths with translationsand/or rotations,would requirein-

creasingamounts of time. In fact,the computation times progressivelyincreaseby several

ordersof magnitude, mainly due to the increaseddimensionalityof the problem. The com-

plexityof the feasible assembly path serves as a component of an evaluation function, which

is used to guide the assembly sequence planning process, in order to identify the most op-

timal (according to specified criteria) assembly sequence plan. Also, designing an assembly

which only requires simple (e.g. straight-llne)trans!_atign_motions for the parts, would

significantly reduce costs and increase throughput of an automated assembly system. Such
issues are of vital importance in the emerging area of concurrent engineering, where "Design

For Assembly" (DFA) and "Design For Manufacture" (DFM) are design approaches which
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seek to improve design quality and assembly throughput, while reducing manufacturing

COSTS.

Previous works on planar path planning have, in general,addressed variantsof the

ShortestPathproblem, which requiresfindingan optimal path, usuallywith an Euclidean

distancemetric. The Configuration(C)-space formulationof the problem has been exten-

sivelyused in the literature(Lozano-Pdrez et al [9],Lozano-Pdrez [I0]).In C-space, the

moving object isshrunk to a point while the obstaclesare simultaneouslyenlarged,and

thisconceptuallysimplifiesthe problem. Constructing the explicitB-rep. of the C-space

obstacleshas both space and time complexity which isexponentialin the d-o-fof R and

polynomial in the complexity of the workspace.

In two dimensions,a Window Graph with k nodes and O(k _)edges,isbuiltinO(km log(m))

time where m isthe product of the number of verticesdescribingthe robot and obstacles

respectively, k = O(m) in the worst case and 1 < k < (rn+ 2). The WC-PCO_ al-

gorithm utilizes the concept of a Polyhedral Cone Obstacle Representation (79C07_) which

transforms the problem, in O(m) time, into that of a point moving amongst a collection,

O(m), of convex parallelogram shaped obstacles. In comparison, the space complexity of

Configuration (C)-space is O(m 2) (Latombe[7], Sharir[13]). The 7_COT_ consists of an O(m)

edges, each of which may be broken up, in the worst-case, into an O(m) segments, by the

O(m) convex obstacles. Thus, in the worst-case, the B-Rep. of the C-space obstacles has

an O(m 2) vertices. But, we have shown that the vertices of the O(m) convex obstacles

form the reduced search space for solving the FeasiblePath problem. Any new vertices in

the B-Rep. of the C-space obstacles will be non-convex vertices, and are not required to be

visited by the FeasiblePath search algorithm.
Let n be the number of vertices in the C-space representation of the problem. O(n 2)

time algorithms are known (Welzl[14], Asano et al [1]) to solve the C-space representation

of the problem, these algorithms have certain assumptions such as non-intersecting edges

(or polygons) in the input. An output sensitive algorithm was presented by Ghosh et al [2]

while Liu et al [8] plan the motion of a circular disc. The previously fastest algorithm was an

O(n 2 log(n)) algorithm using a sweep-line technique (Sharir et al [12]). The WC - P¢OTt

algorithm is expected to improve on any C-space based method since, in the worst case,

n O(m2), and these methods would spend an O(m 2) time in first constructing a boundary

rep. of C-space. Further, any C-space based algorithm is applicable to the PCOT_, since

the C-space boundary can be computed from the PCOT_ in O(m 2) time. From a C-space

perspectlve, tI/e-W--Graphimdes_i:oia'esp0nd to a subset of the convez vertices in the C-space

representation.
In three dimensions, the ShortestPath problem requires exponential time (Sharir et

a1112]). Papadimitriou[ll] presented an approximation algorithm for finding the shortest

path. Hwang and Ahuja [17] present an algorithm, based on a potential field rep. of the

obstacles, for finding paths which may include rotations. They solve the problem in 3D world

space by restricting a search of the orientation space to cluttered regions. We introduce

the PolyhedraiCone ObstacleRep_sentation (79C07_) Which transforms the problem into

that of a point moving amongst a collection, O(m), of convex obstacles. The PCO_ is a

constructive represenatation of the set of contact configurations between the robot and the

obstacles. In comparison, the worst-case space complexity of the boundary rep. of C-space

is O(m 3) in three dimensions (Latombe [5], Sharir [10]), and requires the same order of time
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to construct. There are an O(m) faces in the PC OT"_. Each face is broken into sub-faces,

due to intersections with the O(m) convex obstacles in the PCO_. In the worst case, each

face may be divided into an O(m 2) unconnected sub-faces. The boundary of C-space is

the union of a subset of these sub-faces, resulting in an O(m 3) worst-c_e space comple.,city

for the boundary- representationS, r In regi-ons _-wlaere motion IS =completely constrained by

contacts, the feasible translations may Lie on surfaces with no interior points. Such surfaces

can be inaccessible in a typical C-space boundary representation. Our 3D Window Corner

algorithm solves the FeasiblePath problem in polynomial (O(mS)) time by tracing a path

through Window Corners located on Window Edges. This renders solving FeasiblePath

problems, preferable over solving for the shortest p_ath_for many robotic:applications. From

a C.space perspective, the Window Edges correspond to a subset of the convez edges on the

boundary of a C-space representation.

Further, the FeasiblePath problem is preferable in many rpboticdomains: The Feasi-

blePath problem differs from the ShortestPath problem, since it entails planning a feasible

path which may not necessarily be an optimal path. Although, the FeasiblePath problem can
be reduced to the ShortestPath problem, it's distinguishing features provide the motivation

to develop efficient solutions.

The FeasiblePath problem appears in many robotics-related domains. In many robotic

settings, it would be preferable to find some feasible path quicklyand cgmmence operations,

rather than spend large amounts of time: in: pianuing an optimal path. Planning a feasible

path is vital to generating motions for automatic assembly, telerobotic maintenance and

repair in manufacturing or in hazardous situations such as in nuclear-radiation zones, under-

water or in deep-space exploration. Building sensor-integrated autonomous robot systems

is a focus of current research in robotics. Such intelligent robots have to frequently plan

their movements and reach certain goal configurations, in order to accomplish various tasks.

Typically, the robot would have to self-navigate among a set of obstacles in it's environment,

hence requiring solutions to FeasiblePath problems. An emerging area is that of concurrent

engineering. Here, automated product design and assembly sequencing give rise to a very

large number of tests to determine the assemblability (or separability) of two subassemblies
subject to geometric constraints (BMdwin et _[19].Homem de MeUo_dSanderson [3,4]).

Each 9f these combinatorially large number of tests, is a FeasiblePath problem,

Krishnan and Sanderson [6], have introduced the Polyhedral Cone Representation, Poly-

hedral Cone Obstacle Representation and Window Corners for the two-dimensional version

of the FeasiblePath problem. They proposed the 2D Window Corner algorithm, which solved

the planar FeasiblePath and ShortestPath problems by tracing a path through Window Cor-
ners. The above features resulted in a lower time complexity than previous works which

first construct the C-space. In this paper, Window Edges are introduced and the PC_ and

7)CO7_ are defined for a three-dimensional-environment. The resulting 3D Window Corner

algorithm gives a greater relative improvement in time complexity over algorithms which
construct the boundary of C-space in the three-dimensional case as compared to the planar

version. The notations used in this paper have been kept consistent with those in [6]. Geo-

metric translational constraints are converted into a Polyhedral Cone Representation of the

problem. The concept of Window Corners, along with a Window Corner Theorem,

is used to provide a finite and reduced solution space. Finally, the search ripples through

a single connected component of reachable space containing the initial placement of the
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In Section 2, we present the Window Corner 2D (}4/6') algorithm in two versions. Sub-

section 1 introduces the definitions and terminology which will be used in this paper for the

2D algorithm. Subsection 2 defines the Window Corners and the important Window
Corner Theorem. Subsection 3 describes the Polyhedral Cone Representation. In Sub-

section 4, the definition of a Polyhedral Cone Obstacle Representation (PCOR), transforms

the problem into that of a point moving amongst parallelogram shaped obstacles and forms
the basis for the PCO_ version. We also compare the 79CO_ to the C-space representation.

In Subsection 5, the PC_ and 79CO7_ versions of the WC algorithm are presented, along

with an analysis of their time complexity. An assembly path planning problem and it's

solution are presented in Subsection 6.
Section 3 describes the PVC algorithm in three dimensions, which follows the same

logical development as the planar version. In Subsections 1 and 2, we introduce definitions,

the concept of Window Edges, and the Window Edge and Feasible Path Theorems,

followed by the definition of Window Corners. In Subsection 3, the Polyhedral Cone

Representation of geometric constraints is introduced. Subsection 4 provides the Polyhedral

Cone Obstacle Representation, which conceptually reduces the problem to that of a point

moving amongst a collection of convex, parallelopiped-shaped obstacles. In Subsection

5, we describe a test to determine the feasibility of incremental motion based on all the

contact constraints. Next, we test for the existence of any straight-line assembly path.

The 3D Window Corner algorithm for multiple-step paths, is then described, along with

a discussion of it's time complexity. In Subsection 6, an assembly path planning example

is provided to illustrate the working of the 3D WC algorithm. In Subsection 7, we show

how the PCOT_ can be utilized to compute the minimum distance between the robot and

obstacle boundaries. This algorithm conducts a search over only a subset of the convez

edges, in terms of a C.space representation.

2 FeasiblePath and ShortestPath Problems

in Two Dimensions

2.1 Preliminaries

Definitions:

Z_
* xv = a set of vertices, {v_'} V i = 1,..., v(a'),

A
• xE = a set of edges, {e_'} g i = 1,..., e(r), ( without loss of clarity, we will sometimes

refer to rE as the set of all points contained in these edges ), a'v C _'E,

Z_
a'R = a set of specified polygonal regions, that the edges may enclose, (and referring

to a set of points contained in those regions),

"" {z :z E E 2 ^ (z E xE v z ErR)}, (the set of all points contained in the71" _-.

polygonalregions,edges and vertices),

E2• F= \r.
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In the remainder of this paper, a point q is said to be straight-line reachable from another

point p, if the straight-line translation from p to q is collision-free.

Given two points p, q E E 2, _ denotes the position vector corresponding to the point q,

p'q = _'- if, _ denotes the (interchangeably, the set of points in) line segment between p

and q, and []P"qHdenotes the length of the line segment from p to q. We now introduce the

following definitions. Let p E F.

Definition 1 An a-neighborhood of p is defined as a set Xo(P) = {u : u e E 2, I[_"_ll_< a)

where a is a small, positive, real number.

Definition 2 A fJ-neighborhood of p is defined as a set NO(p) = {u : u E r, H_--al[_< Z}

where/3 is a small, positive, real number.

Definition 3 A point q E r is a Window Corner w.r.t, p, written as WC(q,p), iff:

I. q E rv and

2. there e_.ists a small 13 and a normal, _, to ]Jzi, such that _. p'v > 0 v e :¢'4(q).

Definition 4 A half-line emanating from p is called a ray, r(p), w.r.t, p. The set of all

rays from p is denoted by p(p).

Definition 5 A ray, r(p), is called a colliding ray, iff:

i. r(p) p(p), and

$. r(p) intersects ezactly I bounding edges of x where I > 1.

The set of all colliding rays, w.r.t, p, is denoted by p_(p).

Let the discrete set of intersection points between r(p) and rE, in sequence from p, be

denoted by 2"_(r(p); i) V i = 1,...,l where r(p) 6 p'(p).

Definition 6 0i(p) is the i-th window ray w.r.t, p, iff:

I. o (p) p'(p), and

g. WC(Z1_(Oi(p), 1), p), i.e. the first point of intersection on the colliding ray is a Window

Corner w.r.t.p.

Let e = {Oi(p)} V i= l,...,w,..

2.2 Windows and the Window Corner Theorem

For a given window ray 0i(p): let WC(ZP(Si(p),j),p) ¥ j = 1,...,r where 1 <_ r < I. We
now define Windows which axe a (possibly unbounded) set of contiguous, coUinear points

on a window ray, as follows:

Definltion 7 Let qj = ZP(Oi(p),j) V j = 1,...,1, and let the k-th Window on Oifp) be

denoted by
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1. Ifr=l:

(a) Ifr = 1, then W(Oi(p),r)= {b: b= (A)p_,, t < A}.

(b) else, W(Oi(p),k) {b: b = (1 - A)q_ + Aqk_-t,0 < A _< 1, 1 < k < (r - l)} and

w(0_(p), r) = {b: b = (_)p_, 1 < _}.

2. If r < l: The first (r - 1) windows are defined as in (I(b)) above. W(Oi(p), r) = {b :

g= (1 - _)q; + _q_;_,0 <__ _<1}.

Definition 8 A collision-free path, ffl, from some initial position S to some goal position G,

is defined as a sequence of n points V/x¢2, . . . , d;,_such that _)i_)i+ l Or = 0, V i = 1,..., (n-- 1),

and where ¢'1 corresponds to S and ¢,_ corresponds to G.

Assume that we are given two points p, q E F, but _ is not collision-free i.e. _"_A r # 0.

Also assume that the shortest collision-free path from p to q is pwq, where w E E 2, _Ar = 0,

_qq Cl x = 0. We now state the following theorem:

Theorem 1 (Window Corner Theorem) If the shortest collision-free path from p to q

changes direction at a single point w, then w is a Window Corner w.r.t, p.

Proof: The proof is presented in two parts.

1. w E a'v: By contradiction. Let ((a E (Ha(w))Cl liE:r) : (lln_rll = ,,)) and ((b E

(No(_,)) n _) : (11_11= a)). If (_, e r), s_ Figure l(a), then 3a : A/',,(w) A a" = 0,

hence a---'_CIx = 0. If ((w E r/_) ^ (w ¢ re)), see Figure l(b) then 3a : a'bCIr = 0. But,

I1_tl < II_ll + I1_11.Hence,I1_11+ 11_11+ IIFqll< I1_11+ I1_11.Thus, if w _ rv, a

shorter path can be found and so w has to be an obstacle vertex.

2. Let w be an obstacle vertex. We now show, by contradiction, that there should exist

a normal _, to _, for some small, positive _, such that

_.#>_0 v v_Ha(_). (1)

A situation to the contrary is shown in Figure l(c). In such a case, there exist some

two points a and b, as defined above, for some small, positive, real a, such that

a, b e No(w) and Ilimll+ I1_11+ II_ll < I1_11+ I1_11.Hence, a shorter path can be

found and so w should be such as to satisfy the condition (1) above.

The above (1) and (2) are necessary and sufficient conditions for w to be a Window

Corner w.r.t, p, i.e. WC(w,p), from Definition 3.
( In fact, the following condition should also be satisfied; _. w'q > 0.)

Q.E.D. o

Corollary 1 Given the shortest collision-free path, _, as in Definition 8, every intermedi-

ate point on this path is a Window Corner with respect to it's predecessor on the path, i.e.

)'VC(C,I+x, ¢i) ¥ i = 1,..., (n - 2) and WC(¢i, ¢'i+1) ¥ i = 2,..., (n - 1).

Proof: For q to be the shortest collision-free path from ¢'x to ¢,_, it is necessary that it

represents the shortest collision-free path between any three successive points in q. In other

words, ¢i¢i+l_)i+2 is the shortest colllsion-free path between @i and 0i+2, ¥ i = 1,..., (n-2).

From the Window Corner Theorem, it follows that WC(_bi+t, _'i) V i = 1,..., (n - 2)

and WC(_Pi, ¢i+t) V i = 2,..., (n - 1).

Q.E.D. o
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Figure I:Prgof of the Window Corner Theorem

2.3 Polyhedral Cone Representation (_OC_)

For the rest of the paper, we consider a robot, R, and obstacles, _, to be described by:

• RV _- the set ofrobot vertices,{v_} V i= i,...,v(R),

• RE A_ the setof robot edges,{e_} V i ---1,...,e(R),(wewill alsoreferto RE as

the setof pointscontainedin theseedges),RV C RE,

• RR _ a setofspecifiedpolygonalregions(orthe pointscontainedin them) that the

robot edges may enclose,

(x REv eRR)},oR= A E =

• _V - the set of obstacle vertices, {v/_} V i = 1,..., v(_),

A
• _E ffithe set of obstacleedges, {e_} ¥ i = 1,...,e(@),(.withoutlossof clarity,

we willsometimes referto _E as the set ofall points contained in these edges ),

_V C _E,

,4_R A= a setofspecifiedpolygonalregions(or the pointscontainedinthem) thatthe

obstacleedges may enclose,

(z:z E (z v• _ = A E z

,x E2• F= \_.

Note that the robot and obstaclesaxe basicallya collectionof (possiblyunconnected)

edges ina planarenvironment. In addition,S and G referto the startand goalpositionsof
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Figure2: A Vertex-Edgeconstraintcone

some fixedreferencepoint on the robot,respectively.Also,we definethe space complexity

of the problem by the followingterms:

= v(R),:(#),e(R)e(#)= O(m), ,,(R)e(#)= O(m), e(R)v(#)= O(m). (2)

The constrainton the translationofa vertexwith respectto an edge can be represented

as a Vertex-Edge (VE) constraint cone, defined as follows.

Definition 9 A Vertex-Edge constraint cone, CvE(nl, ej), between a vertex, vi, and an

edge, ej, consists of two bounding vectors, _ and _, drawn from the vertex to the end

points of the edge, and a base ej, which is the line segment joining the ends of the two

bounding vectors. A VE cone, consisting of an apex, a base and two bounding vectors, is

shown in Figure _.

A VE cone can be unambiguously representedby threeunitvectorsn_, n_2,n-B,(which

axe the normals tothe two bounding vectorsand the base ofthe VE cone respectively)and

one of the bounding vectors,say,s_. These four vectorsaxe collectivelycalledthe normal

representation of the VE cone.

Definition 10 The normal representation of the negation of a IrE cone, denoted by

-CvE(vi, ei), is obtained by reversing the direction of each of the vectors in the normal

representation of the VE cone.

We are now ready to define the Polyhedral Cone Representation, PC'R., as follows. In the

two-dimensional context, the constraint cones are actually polygonal, but will be extended

to polyhedral cones in three-dimensions. Given a robot, R, at some position and orientation

in E 2, and a set of obstaxles, _:

Definition 11 The set of all VE cones between the robot and obstacles, is called the Poly-

hedral Cone Representation, 73C7_(R, _), or simply 79C7_, i.e.

PCT_ = {Cv_(v_,e_)V i,j}U {-CvE(v_,eta)V k,l}. (3)
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Figure3: (a) Robot, R, and obstacles.(b) The PCR

The origin of the PCT_ is denoted by O_,c_z. An example of a PCT_ is shown graphically

in Figure 3.

Definition 12 A vector _ E-R _ is said to be infeasible w.r.t: some VE cone, Cj, written

INFEAS(g, Ci), iff:

nT, > o,

2. g.na_ > 0 and

s. <

If semi-free paths are allowed, conditions I and _ are strict inequalities.

Definition 13 Vector _ is infeasible w.r.t, the TPCT_, i.e.

INFEAS(g,'PCT_) _ if 3Cj : (Cj E PeR) ^ (INFEAS(g, Cj)). (4)

A vector that is not infeasible w.r.t the PCT_, is said to be feasible w.r.t, the PC7£',

FEAS(g, pCT_).

Theorem 2 A translation of the robot by some vector _, from it's current position is guar-

anteed to be collision-free iff FEAS( _,7)CT_).

Proof: We know from Definitions 12 and 13 that if FEAS(_, PCT_), then ff does not

pierce the base of any constraint cone. From Definition 9, this implies that no robot

(obstacle) vertex collides with an obstacle (robot) edge. These are necessary a_nd sufficient

conditions for any translation aznong planar polygonal objects to be collision-free, and hence

the proof.

Q.E.D. O

A _/ector is infeasible w.r,t, the PCT_ iff it pierces the base of any VE cone. Hence,

for the motion of Or, c_z, we can consider the bases of the VE cones to be obstacle edges.
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We know from Definition 3 that every Window Corner is the end point of some obstacle

edge. Therefore, the Window Corners with respect to O_cre, are the vertices of the VE

cone bases. An inspection of the VE cone from Definition 9 shows that these base vertices

correspond to a contact between some robot vertex and an obstacle vertex. Since, any of

these base-vertices, and only these base-vertices, can be Window Corners w.r.t. O_,cre,

these vertices form the set of candidate Window Corners, i.e.

cwc ={(.,R,v?)v i,j} or (5)

WC(c,O c ) (3(v,R, cwc : (/?- (6)
Each element of C},V¢ corresponds to a labelling of a base-vertex of some VE cone. But, in

the CWC, the vertices are labelled as representing the contact between some robot vertex

and some obstacle vertex. Thus, the search space to find the Window Corners w.r.t. O_,cre,

is of size m, even though there are physically, at least 2m base-vertices in the PCTL

2.4 Polyhedral Cone Obstacle Representation (_CO_)

Given one edge each on the robot, i 6 RE, and obstacle, j 6 _E, with vertices vl, v2 and

v3, v4 respectively. It can be observed that the base-edges of each of the four VE cones

between i and j, enclose a parallelogram-shaped region, which is entirely unreachable by a

collision-free translation from OpcTz.

Definition 14 A Polyhedral Cone Obstacle between two edges, i and j, denoted by PCO( i,j ),

is the parallelogram defined by the four vertices whose position vectors are as follows:

(v_ - v_),(v_ - v_),(v_ - v_),(v_ - v_). We will sometimes refer to a PCO as the set

of all points contained in the parallelogram.

Definition 15 The set of all :PCOs computed between robot and obstacle edges, at S, is

called the Polyhedral Cone Obstacle Representation (7_C0"1_) of the problem;

7_COT£= {PCO(i,j)}Vi=I,...,e(R) Y j= 1,...,e(_) (7)

We also refer to 7_C0T£ as the set of all points contained in the constituent PCOs.

It follows from the above that:

if 3:PCO(i,j): v e 79¢0(i,j) :_ INFEAS(g, PCTZ) (S)

Since any point that is unreachable from O_,c_ lies in the shadow of some PCO, all

infeasible positions (corresponding to boundary intersections) of the robot are contained in

the PCOT_. An example of the PCO_ is drawn in Figure 4. Let the origin of the PCOT£

be O_,coTz; it corresponds to the start position of the robot. In the PC07_, the various

PVOs form the obstacles for the motion of a point, henceforth called the point-robot r,

from OpcTe to a point whose position vector is G - ft.

Theorem 3 Finding a shortest collision-free multistep translation path, _, for the point-

robot from position O_,c_ to position G - if, in the PC07_, such that _ N 79C0_ =

@,V i = 1,...,(n - 1), is also a solution to the original problem.
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Figure 4: Ca) Robot, R, and obstacles. (b) The PCOR

Proof: It is easily Verified_that the boundary edges of :PCO(/,j) are the bases of the

four VE cones between robot edge i and obstacle edge j. In addition, each _CO is a

parallelogram-shaped obstacle and is convex. Avoiding each _CO is equivalent to avoiding
a collis0n between _ pairs of robot and obstacle edges, since all vertex-edge collisions are

avoided, from (8). This is because a_ infeasibie points _axe contained within the PCO_.

Alternatively, the :PCOs correspond to positions of the point-robot at which RE n @E _ 0.

The goal position for the point-robot is simply found to be G - ,,_: _l_, therefore provides

the relative coordinates for the locus of any point on the robot R, and hence the solution

to the original problem.
Q.E.D. c]

2.4.1 A Comparison of PCC)'R.and C-space ..........

Hence, in the :PCCT]_, the problem is to find a collision-free path for a point-robot moving

from the start position,O_,¢o_, to a goal position, _ - S', among a set, O(m), of parallelo-

gram shaped, convex obstacles (PCOs). It is interesting, at this juncture, to compare the

T_CCT_ with the C-space representation. The _)COT_ is a convex (parallelopiped shaped)

constructive representation (superset) of the C.space obstacle boundaries. Collectively, the

_C_ correspond to robot positions which result in an intersection between_he robot and
obstax.le boundaries. In the worst case, constructing the C-space boundary representation

requires time O(m 2) and the boundary of C-space can have an O(m 2) number of vertices

and edges (Latombe[7], Sharir[13]). Although may single connected component of C-space

was proven to have an O(m) number of vertices, no technique is known to generate them

in O(m) time (Sharir[13]). The PCOT_ consists of an O(m) eclges _, each of which may be

broken up, in the worst-case, into an O(m) segments, by the O(m) convex obstacles. Thus,

in the worst-case, the B-Rep. of the C-space obstacles has an O(m 2) vertices. But, we have

shown that the vertices of the O(m) convex obstacles form the reduced search space for

solving the FeasiblePath problem. Any new vertices in the B-Rep. of the C-space obstacles
will be non-convex vertices, and are not required to be visited by the FeasiblePath search

algorithm. A worst-case example is shown in Figure 5, where the number of C-space vertices
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is O(m 2) and the number of PCOT_ vertices is O(m).

While an algorithm might spend an O(m 2) time in generating a boundary rep. of" C-

space and then solve the problem of moving a point-robot among C-space obstacles having

complexity O(m2), the W¢ algorithm (presented below) constructs the PCOT_ in O(m) time

and solves the problem of moving a point-robot among 7:'CO obstacles having a complexity of

O(m) only. Clearly, the WC algorithm is working with a less-complex obstacle description,

and this is possible because it is found that the precise boundary description of the C-sp_ce

is not required for the solution of the ShortestPath or FeasiblePath problems in E 2.

2.5 Window Corner (WC) Algorithm: Two Dimensions

The problem description consists of a robot and a set of obstacles, all of which are arbi-

trary (non-convex) polygonal objects and are specified as a collection of edges in a planar
environment. It is to be determined if there exists some feasible col].ision-f'ree multistep

translation path such that the robot can move from an initial position S to some given goal

position G, and, if so, to find the shortest feasible path. It is assumed that the start and

goal positions are in free space.

We first open the node corresponding to the initial position of the robot and search for
new reachable Window Corners from the current position of R. Every candidate Window

Corner from CWC is tested against the conditions for a Window Corner from Definition 3
and then it is determined if the Window Corner is reachable with a collision-free translation,

by the 7_C_ or 7_¢O7"_ method. These reachable Window Corners are then su_:cessively

opened until there are no new reachable Window Corners. As each reachable Window

Corner is opened, we also check whether the goal position is reachable from the present

position. Alongside, a Window (W) -Graph is built whose nodes are the reachable Window

Corners u{S, G}, and WhOse edges represent the distances between the nodes which each

edge connects. Actually, only a subset of the convez vertices of the C-space representation

is visited. A breadth-first search strategy is used to cover the finite search space.

2.5.1 WC - 7_C7_ Algorithm

In this version, we find the set of reachable Window Corners, from among CWC by testing

the feasiblity of each of the corresponding vectors w.r.t, the _PCT_(R, t_). 1"(_ denotes the

point with position vector f'.

The algorithm proceeds as follows:

1. Initialize CWC;

2. Assign CWC _ CWC u G; Initialize OPEN ,--- S;

3. for each node, n E OPEN

4. { /*n is the current position of R */

.

6.

Compute 79C7_;

for each unreached element, c - (v/R, v_) E CWC



14

!

I
I I

I !

I
!

I
!

I
I
I
I

I

I I I
I
I
I
!

I

: I:

I !
!

!
!

!

Figure 5: Compazison of PCO_ and a S-Rep, of C-space obst_rl_ U

i

i

m

7_

I

Ii



w

q

w

w

L

Krishnan and Sanderson: May 3, 1992 15

T. {
q

8. Let _= v? - v_;

9. if ( FEAS(_, PC_) and WC(r(_, O_,cr_) and edge (n, c) _ W-Graph)

10. then (OPEN 4-- OPEN U r(_ + _; add edge (n, c) to W-Graph)

ll. }

12. OPEN *--.OPEN \ n;

13. }

2.5.2 WC - PC07_ Algorithm

In this version, the set of reachable Window Corners w.r.t, the current position are found

by using a sweep-llne algorithm over the obstacle edge set contained in the PCOR. The
search starts from O_,co_ and keeps opening newly reached nodes and adding new edges

to the W-Graph. The algorithm proceeds as follows:

1. Compute PCOT_;

2. Initialize OPEN ,--- O_,co_;

3. for each node, n E OPEN

4. { /* n is the current position of the point-robot r */

5. Compute all new positions p : WC(p, n);

6. Let OPEN *-- OPEN U p;

7. Add edge (n,p) to W-Graph.

8. OPEN _ OPEN\ n;

9.}

2.5.3 Discussion

The nodes in the W-Graph correspond to the reachable Window Corners. Let the number

of nodes in the final W-Graph = k; 1 < k < (m + 2). Hence, the W-Graph can consist of

O( k 2) edges.

Theorem 4 The WC - PC_ algorithm constructs the W-Graph in time O(km 2) <_ O(m3).

Proof: At each reachable position, an O(m) vectors of the CWC are tested for feasibility

with respect to the PCT_. Since the PCT_ consists of an O(m) constraint cones, the total

test at each node takes O(m _) time. Since k nodes are opened, the entire algorithm takes

O(km 2) time to construct the W-Graph, where, in the worst case, k = O(m).
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Q.E.D. []

The FeasiblePath problem is solved if G is reachable from some Window Corner reachable

from S. The W-Graph can be searched for the shortest path between S and G, giving the

solution to the ShortestPath problem.

Theorem 5 The WC- PC07_ algorithm constructs the W-Graph in time

O(kmlog(m))_<O(m21og(r,',)).

Proof: At each node, the sweep-line algorithm takes O(m log(m)) time to identify the

new reachable Window Corners. This is because, the obstacle set in the :PCOT_ consists of

an O(m) edges. Since k nodes are opened, the WC - 79C0_ algorithm takes O(km log(m))

time.
Q.E.D. []

Theorem 6 Using the WC- PCO_ algorithm, the FeasiblePath and ShortestPath prob-

lems can be solved in O(km log(m)) < O(m 2 log(m)) time.

........ : :_ = =

Proof: Once the W-Graph is built, it can be searched for the shortest path from 5' to

G. Using Dijkstra's algorithm, the shortest path among k nodes in the W-Graph can be

found in O(k 2) time. As a result of Theorem 5, the proof follows.
Q.E.D. []

The nodes in the W-Graph are a subset (Window Corners) of the convez vertices of

the C-space representation of the problem. Let n be thenumber of vertices in the C-space

representation of the problem. O(n _) time algorithms are known (Welzl[14], Asano et al

[1]) to solve the C-space representation of the problem, but these algorithms have certain

assumptions such as non-intersecting edges (or polygons) in the input. The previously

fastest algorithm was an O(n 2 log(n)) algorithm using a sweep-line technique (Sharir et al

[12]). The worst-case bound on the number of C-space vertices is n = O(m 2) (Latombe[7],

Sharir[13]). Since it does not construct C-space, the WC - 7_C07_ algorithm is expected to
be faster than any method which first constructs the C-space. Further, any C-space based

algorithm is applicable to the "PC07_, since the C-space can be computed from the 79CO7_

in O(m 2) time.

2.6 Example

We tested the WC algorithm on an assembly planning problem. The objective was to
determine whether a feasible collision-free multistep translation path existed to separate

a non-convex polygonal part situated in a maze-type assembly, consisting of some tightly

constrained regions. The WC algorithm successfully solved the FeasiblePath problem, and

reported a feasible (and shortest) path consisting of 27 translations, in under lOOms. This

result is shown in figure 6.

3 The FeasiblePath problem in Three Dimensions

3.1 Preliminaries

We introduce the following definitions:
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Figure 6: A FeasiblePath problem and its solution using the Window Corner algorithm
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A
a'v = a setof vertices,{v_'}Y i= I,...,v(f),

A
a'g = a set of edges, {e_} V i = 1,..., e(a-), where the end points of each edge are

straight-Une reachable from each other, ( without loss of clarity, we will sometimes

refer to rg as the set of all points contained in these edges ), a-v C a-E,

A
a-r = a set of fazes, {.f_} Y i = 1,...,/(a-), ( we will sometimes refer to a-F a.s the

set of all points contained in these faces ), rE C a'F,

A
a'a = set of (or the points in the) specified polyhedral regions, that the faces may

endo6e,

{z:zEE 3 (z V zf = A E a-F E a-R)},the set of allpoints containedin the

polyhedralregions,faces,edges and vertices,

F =A E3 \T (the free space).

In this paper, a point q is said to be straight-line reachable from another point p, if the

straight-line translation from p to q is collision-free.

Given two points p, q E g 3, _"denotes the position vector corresponding to the point q,

p_ = ¢/- f, _ denotes the (interchangeably, the set of points in) llne segment between p

and q, and ][]_11 denotes the length of the line seg-ment from p to q. We now introduce the
following definitions. Let p E F.

Definition 18 An a-neighborhood of p is defined as a set A/',(p) - {u : u E E 3,1175"ull_- a}

where a is a small, positive, real number.
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Definition 17 A t3-neighborhood of p is defined as a set A/'_(p) = {u : u E r, II_[I _<A}
where/3 is a small, positive, real number.

Definition 18 An E-neighborhood of an edge e, with vertices vt and v2, is defined as a set

_(e) - {u : u E _, w E e, ll_-_ll_<_,w'u.v1_2= 0} where _ is a small, positive, real number.

Definition 19 An edge e E 7rE is a Window Edge w.r.t, p, written as )4]_C(e,p), iff,

there exists a small e and a normal, if, to the plane containing e and p, such that

ft. I]O > 0 V v E Aft(e). WP(z,p) states that point x is located on an edge which is a
Window Edge w.r.t.p.

3.2 The Window Edge and Feasible Path Theorems

Definition 20 A collision-free path, 9, from some initial position S to some goal position

G, is defined as a sequence of n points ¢1_2,..-,¢n such that ¢_¢i+1 (3 int(r) = 0,V i =

1,..., (n - 1), and where ¢1 corresponds to S and ¢,, corresponds to G.

Assume that we are given two points p,q E F, but ii_ is not collision-free i.e. _'_N _r _ $.

Also assume that the Shortest collision-free path from p to q is pwq, where ca E E 3, _NTr = 0,

w--_M r = 0. We now state the following theorem:

Theorem 7 (Window Edge Theorem) /f the shortest collision-free path from p to q

changes direction at a single point ca, then w lies on a Window Edge w.r.t, p.

Proof: The proof is presented in two parts.

1. ca E rE: By contradiction. Let ((a E (.Ms(w))f3 _) : (l[_[[ = a)) and ((b e

(Ara(ca)) f3 _qq) : (I[w-_][ -- a)). If (w E F), see Figure 7(a), then qa: AZ_(ca) n r = 0,

hence a-"_N7r = 0. If ((w E _rf) A (ca ¢ rE)), see Figure 7(b) then 3a : a--_N r = 0. But,

ll_tl < II_ll + [l_[I. Hence, [l_ll + II_[I+ [l_ll < I[_[I + [l_ll. Thus, if ca ¢ rE, a

shorter path can be found and so w has to lie on an obstacle edge.

2. Let w lle on an obstacle edge e. We now show, by contradiction, that there should

exist a normal _, to the plane containing e and p, for some small, positive e, such that

,T._ >_.0 v _E _(e). (9)

A situationto the contraryisshown in Figure 7(c).In such a case,thereexistsome

two points a and b, as defined above, for some small,positive,reala, such that

a, b e a(w) and II_all+ I1_11+ 11_11< I1_11+ I1_tl. Hence, a shorter path can be

found and so ca should be such as to satisfy the condition (1) above.

The above (1) and (2) axe necessaxy and sufficient conditions for ca to lie on a Window

Edge w.r.t, p, i.e. WP(ca, p). from Definition 19.

( In fact, the following condition should also be satisfied; ft. w'q > 0.)

Q.E.D. o

Corollary 2 Given the shortest collision-free path, 9, as in Definition 20, every interme-

diate poin.t on this path lies on a Window Edge with respect to it's predecessor on the path,

i.e. WT:'(g,i+x, g-'i) ¥ i - 1,..., (n - 2) and WP(V.'i, g'i+t) V i = 2,..., (n - 1).
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Figure 7: Proof of the Window Edge Theorem

Proof: For _ to be the shortestcollision-freepath from _blto _b,_,itisnecessarythatit

representsthe shortestcollision-freepath between any threesuccessivepointsin _. Inother

words, _bi¢'/+1@i+2istheshortestcollision-freepath between _biand @;+2,¥ i= I,...,(n-2).

From the Window Edge Theorem, itfollowsthatW_(_bi+1, _) V i= I,...,(n - 2) and

V i = 2,..., (n - 1).
Q.E.D. o

Although the successorpoint on a shortestpath lieson a Window Edge w.r.t,itsprede-

cessor,the problem oflocatingthe actualpointson the Window Edges requiresexhaustive

calculations,sincea continuousspace needs to be se_ched. It isfor thisreason that the

problem of computing the shortestcoUision-freepath in three-dimensions has been found

to be exponentiallydifficult(Shariret ai[12],PapaAiimitrou[liD. Interestingly,forfindinga

feasiblepath,itissufficientto visita Window Edge once. The precisepointon the Window

Edge, thatisvisited,isnot criticaltofindinga feasiblepath,ifone exists.This isshown by

the followingcorollaryand a theorem. Let thereexista shortestcollision-freepath _, as in

Definition20,from some pointp to G. Let the firstintermediatepoint on thisbe _blE PVi

where Wi isa Window Edge w.r.t.p.

Corollary 3 Every point z E }'Vi, which is straight-line reachable from p, lies on some

feasible path frvrn p.

Proof: For any point z E Wi, an obvious feasible path from p to G exists. Such a path

firstvisitsz and then visitsthe intermediatepointsof 9, begining from _i, in sequence.

This isbecause @i isstralght-linerea_:hablefrom every point z E Wi.

Q.E.D. o

Let some present position be p. Let the set of Window Edges w.r.t, p be Wi. Let y be

a set of points, defined as consisting of exactly one straight-line reachable (from p) point (if

one exists),from each Wi.

Theorem 8 (Feasible Path Theorem) There ezists a feasible path from p to G, if and

only if, there ezists a feasible path through at least one of the Points in y.
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Proof: The first part is obvious. For the second part,assume the contrary. Let there
exist a feasible path from p to G but that none of the points in y lies on a feasible po.th.

Obviously, there exists a shortest path from p to (7. The first intermediate point _bl will

clearly lie on some Window Edge _4Jj. From Corollary 2, there exists a feasible path through

every reachable point on Wi. Since y consists of one such point from Wj, there exists a

feasible path from p to (7 through one of the points in y. We have arrived at a contradiction

and hence the proof.

Q.E.D. o

As a result of the Feasible Path Theorem, we can proceed with the search as follows.

Starting from the initial position, we keep visiting some point on a new Window Edge until

either the goal position is reached or there are no new Window Edges to visit. Proceeding

in this way, a Window Edge Tree can be built which represents the various sequences of

Window Edges that have been visited.

Theorem 9 To be able to detect a feasible path from p to G, each edge e_ needs to be visited

in at most one point, resulting in a finite search space of size = e(_r)o

Proof: Let edge e_" be visited at point y. It is seen that there exists a feasible path

passing through some point z E e_', z _ y, if and only if there exists a feasible path passing

through y. Hence, the existence of a feasible path is guaranteed to be detected, even if at

most one point y on every edge e_', is expanded. Since the maximum number of edges that

can be visited, is e(a'), the proof follows.

Q.E.D. 0

We now introduce Window Corners which identify reachable locations, on Window

Edges. The Window Corner Mgorithm will trace a path through Window Corners for

solving the FeasiblePath problem.

Definition 21 If a ray emanating from position p, intersects • such that the first n points

of intersection lie on Window Edges, )4Pi w.r.t, p, then these intersection points are cal.led

Window Corners corresponding to the Window Edge }'Yl Vi = 2,..., n.

3.3 Polyhedral Cone Representation (PCT_)

For the rest of the paper, we consider the robot, R, and obstacles, _, to be described

as follows: The robot has v(R), e(R) and f(R) vertices (v/R), edges (e_), and faces (f_)

respectively. R also denotes the set of all points contained in the robot. The obstacles have

v(@), e(_) and f(_) vertices (v_), edges (e_), and faces (f_) respectively. _ also denotes

all points contained in the obstacles. Note that the robot and obstacles are basically a

collection of faces in a polyhedral environment. We assume that each subassembly is equal

to the closure of its interior points and that each face is an orientable surface. In addition,

S and G refer to the start and goal positions of some point on the robot, respectively. Also,

we define the space complexity of certain terms as under, where m = v(R)v(_):

e(R)e(,_)= O(m), f(R)f('_)= O(m), v(R)f(_) = O(m), f(R)v(_) = O(m). (I0)

Theconstraint on the translationof a vertexwith respectto a convex, planarfacecan

be represented as a Vertez-Face (VF) constraint cone, which can be defined as follows.
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Figure 8: (a) Vertez-Face and (b) Edge-Edge constraint cones
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Definition 22 A Vertez-Face constraint cone Cvr(vi, fj), between a vertez, v_, and a face,

fj (with v(fj) vertices), consists of bounding vectors, _ Vk = 1,..., v(.fj), drawn from the
vertez to the corners of the face, and a base, which is the face itself. A VF cone, consisting

of an apez, a base and the bounding vectors, is shown in Figure 8(a).

The constraint on the translation of an edge with respect to another edge can be repre-

seated as an Edge-Edge (EE) constraint cone, which can be defined as follows.

Definition 23 An Edge-Edge constraint cone, CEE(ei,ej), between an ordered pair of

edges, ei and ei, consists of.four bounding vectors, ft, _, _ and f4, drawn from the vet-

tices of ei to the vertices of the ei, and the planar base formed by the end.points of bounding

vectors. An EE cone, consisting of an apez, a base and four bounding vectors, is shown in

F re 8(b).

A VF cone or an EE cone can be unambiguously represented by unit vectors ns"k,n'B,

(which are the normals to the bounding faces and the base of the cone respectively) and

one of the bounding vectors, say, s_. These vectors are collectively called the normal

representation of the VF cone.

Definition 24 The normal representation of the negation of a VF (or EE) cone, denoted

by

-CVF(Vl, fi) (or -CEE(ei, e i)), is obtained by reversing the direction of each of the vectors

in the normal representation of the VF (or EE) cone.

We arenow ready to definethe PolyhedralCone Representation,73C7_,asfollows.Given

a robot,R, at some positionand orientationin E 3,and a set ofobstacles,_:
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Definition 25 The set of all (fully three-dimensional i.e. non.degenerate) VF and EE cones

between the robot and obstacles, is called the Polyhedral Cone Representation, PCTC( R, _ ),

or simply PCT?., i.e.

= i,i}u {-Cvr(vLf )v k,l}u e )V* (11)

The originof the PC_ isdenoted by Opc_.

Definition 26 A vector _ E R3 is said to be infeasible w.r.t, some VF or EE cone, C3

(with b bounding vectors), written IN FEAS(6, Cj), iff:

i. 6. n_k >__0, Vk = l,...,b and

e. <_o.

If semi-free paths are allowed, conditions 1 and _ are strict inequalities. In the case of

an unbounded cone, only condition I holds.

Definition 27 Vector _ is infeasible w.r.t, the 7_C7_, i.e.

INFEAS(g, PCT_) _ if 3C i : (C i E :PCT_)^ (INFEAS(_, C.i)). (12)

A vector that is not infeasible w.r.t the 79C7_, is said to be feasible w.r.t, the PC_,

FEAS(_, PCT_) ......

Theorem 10 A translation of the robot by some vector g, from it's current position is

guaranteed to be collision-free iff FEAS( g, PCT_).

Proof: We know from Definitions 26 and 27 that if FEAS(Y, PCT_), then _7does not

pierce the base of any constraint cone. From Definitions 22 and 23, this implies that

no robot (obstacle) vertex collides with an obstacle (robot) face, and that there are no

collisions between robot and obstacle edges. These axe necessary and sufficient conditions

for any translation among polyhedral objects to be collision-free, and hence the proof.
Q.E.D. o

Any non-convex face of the robot or obstacleis firstdecomposed into convex parts,

which are then used forthe computation ofthe :PCT_,resultinginO(m) constraintcones.

A vectorisinfeasiblew.r.t,the PCT_ iffitpiercesthe base of any VF or EE cone.

Hence, forthe motion of Opc_z, we can considerthe bases of the VF and EE cones to be

obstaclefaces.We know from Definition19 that Window Edges correspond to the edges of

the obstaclefaces.Therefore,the potentialWindow Edges with respectto Opcr_,are the

edges of the VF and EE cone bases.

In fact,each such base edge isalsothe base edge ofsome EE cone. An inspectionofthe

EE cones from Definition23 shows that thesebase edges correspond to a contactbetween

some robot (obstacle)vertexand an obstacle(robot)edge.

Now we are in a positionto identifythe Window Corners w.r.t.O_,cr_. We visita

Window Edge at one ofit'sverticesifthe correspondingtranslationvectorisfeasiblew.r.t.

the "PCT_.Ifboth the verticesareunreachable,we compute the pointon the Window Edge,

which liesin the directionof the llneof intersectionof the triangularfacetssupported by
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the Window Edge and some other Window Edge. These facets are supported at O_,cn and

are the bounding face of the EE cone corresponding to the Window Edges.

The points on the Window Edges which are visited, using the above technique, are the

previously defined Window Corners. The search space to find the Window Corners w.r.t.

O_,cn, is O(m2), since there are an O(m) Window Edges.

3.4 Polyhedral Cone Obstacle Representation (79CO7_)

Given two convex planar faces, fl and f2, it is observed that the base-faces of all the VF

and EE cones between the two faces, enclose a convex polyhedron whose interior is entirely

unreachable by a collision-free translation from 07,c_.

Definition 28 A PCO between a pair of convex faces is a convex polyhedron whose bound-

ing faces correspond to the base-faces of some VF or EE cone between the two faces. We

will sometimes refer to a PCO as the set of all points contained in the polyhedron.

Definition 29 The set of all PCOs computed between robot faces and obstacle faces, at

S, is called the Polyhedral Cone Obstacle Representation (PCOT£) of the problem:

PCOT_={PCO(i,j)} V i=I,...,f(R) Vj=l,...,f(@) (13)

We also refer to PC07_ as the set of all points contained in the constituent PCOs.

Definition 30 A vector _ E R s, is feasible w.r.t, a PCO iff: _0 int(7_CO) = 0. This can

be determined by testing the vector against each of the faces comprising the PCO. A vector

that is feasible w.r.t every :PCO, is said to be feasible w.r.t, the PC07_; FEAS( _, P¢O7_).

It follows from the above that:

if ]PCO(i,j): v E int(7_CO(i,j)) :::" INFEAS(_,PCT_) (14)

Let the origin of the :PCOT_ be O_,co_z; it corresponds to the start position of the robot.

In the Peon, the various 79¢0s form the obstacles for the motion of a point, henceforth

called the point-robot r, from OpcTz to a point whose position vector is G - S.

Theorem 11 Finding a feasible _or shortest} collision-free path, _, /or the point-robot from
position O_,c_ to position G - S, in the PC07_, such that FEAS(¢_+I - ¢i, PCOT£) =

0,¥ i = 1,...,(n - 1), is also the solution to the original FeasiblePath (or ShortestPath)

problem.

Proof: It is easily verified that the boundary faces of the 7_COs are the bases of the

VF and EE cones between robot and obstacle faces. Avoiding the interior of each PCO is

equivalent to avoiding a non-contact colllson between all robot and obstacle faces, since all

edge-face collisions are avoided, from (14). The goal position for the point-robot is simply

found to be _ - ,_. _, therefore provides the relative coordinates for the locus of some point

on the robot R, and hence the solution to the original problem.

Q.E.D. C3
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3.4.1 PCOT¢. and C-space

Hence, in the PCOR, the problem is to find a collision-free path for a point-robot moving

from the start position,O_con, to a goal position, (_- if, among a set, O(m), of convex

polyhedral obstacles (PCOs). The PCOR is a convex constructive representation (superset)

of the C-space obstacle boundaries. Collectively, the PCtgR corresponds to robot positions
which result in an intersection between the robot and obstacle boundaries. In the worst

case, constructing a boundary rep. of the C.space requires time O(m3), and the boundary

of C-space can have an O(m 3) number of vertices and edges (Latombe[7], Shaxir[13]). There

are an O(m) faces in the 79COR. Each face is broken into sub-faces, due to intersections

with the O(m) convex obstacles in the PCOT_. In the worst case, each face may be divided

into an O(rn 2) unconnected sub-faces. The boundary of C-space is the union of a subset

of these sub-faces, resulting in an O(m 3) worst-case space complexity for the boundary

representation. In region s where motion is completely constrained bY contacts, the feasible

translations may lie on surfaces with no interior points. Such surfaces can be inaccessible

in a typical C-space boundary representation. Such contact surfaces are accessible in our

PC OR representation, since all face-face constraints are individually represented.

Therefore, while an algorithm might spend an O(m a) time in generating C-space and

then solve the feasibility problem of moving a point-robot among C-space obstacles having

complexity O(m3), we have shown that an algorithm could construct the PCO_ in O(m)
time and solve the feasibility problem of moving a point-robot among PCO obstacles having

a complexity of O(m) only. The WC algorithm is working with a less-complex obstacle

description, and this is possible because it is found that the precise boundary description

of the C-space is not required for the solution of the ShortestPath or FeasiblePath problems
in E 3. In addition, the Window Edges correspond to a subset of the convex edges of the

boundaxY representationofC-space: .... _

3.5 Hierarchical Assembly Path Planning

The problem environment consistsof a moving-subassembly (robot) and a collectionof

obstacle-subassemblies,allof which axe assumed to be polyhedral,and axe describedby a

setof faces.We assume thateach subassemb_-is equal to the closureof itsinteriorpoints

and that each faceisan orientablesurface.The initialand goal positionsfor the robot

axe alsospecified.In assembly sequence planning,a goal configurationcorresponding to

a disassemblycan be set up trivially.The Window Corner algorithm determines ifthere

existssome colllsion-freepath forthe robot to reachthe goalconfiguration,and enumerates

such a path. We assume that the robot isnot completelycontainedwithinany obstacle.

3.5.1 Feasibility of Incremental Translation

We now determine the feasibility of incremental translational motion, based on analyzing

allthe (notonly planar)contact constraints.We firstcompute the PCOR. Ifthe O_corz

liesin the interiorof at leastone PCO, then the robot isintersectingthe obstacles,and

thereforeno feasibleincrementalmotion ispossible.

If¢)PcoR lieson the boundary of ioCOj, then thiscontactgivesriseto an unbounded,

convez Local ConstraintCone, LCj, whose normal representationconsistsof the normal
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Figure 9: Computing Local Constraint Cones

(in the directionof PCOj) to the 7)CO faceon which O7,co_ lies.Note that the normal

representationof LCj has 3,2 or 1,vectorsdepending on whether OPcoT_ lleson a vertex,

edge,or the interiorof a faceof7)COi respectively.

The setofallLCj forall(say,k in number) the PCOj, incontact with 07,co7ziscalled

the Local Cone Representation or fXR,.

Clearly,any incrementalmotion ispossibleifand only if,thereexistssome unbounded

vector(a ray)which isfeasiblew.r.t,every contacting7_¢0 E PC_. Using the preceding

discussionon Window Corners,itisseen thatthereexistssuch a feasiblevectorifand only

ifone of the rayscontaininga Window Corner isfeasible.Hence, the possibleunbounded

vectorsare the individualbounding vectorsof the localconstraintcones or the vectors

corresponding to the intersectionofthe boundary of a pairof localconstraintcones.Ifthe

number of contactsissmall,then the feasibilityof incrementalmotion can be determined

efficiently(in O(k 3) time),before proceeding with the more computationaily expensive

search for multiple-step paths.

Figexe 9(a) shows an obstacle face and a robot edge. The PCO is given in Figure 9(b).

Since O;,¢_ lies ou a vertex of the 7)CO, the Local Constraint Cone is the intersection of

three half-spaces, Figure 9(c).

3.5.2 Testing for Straight-line Assembly Paths

In thissubsection,we show how to determinetheexistenceofa straight-linepath to separate

a pairof non-convex polyhedralsubassemblies.Itisto be determined ifthereexistssome

unbounded vector(ray)which isfeasiblew.r.t,the 7)CO_. The procedurefollowedissimilar

to that in the previoussectionand requiresobtainingrays,containing Window Corners,

which are feasiblew.r.t.7)C_. Hence, determiningthe existenceof a straight-linepath

to separatea pairof subassembliesrequiresO(m 3) time.



am

U

Krishnan and Sanderson: May 3, 1992 26

m

3.5.3 Paths with Multiple-Translations
__ _ --_

Ifsome incrementaltranslationisfeasible,and a straight-lineassembly path does not ex- •

ist,the algorithm searchesfor a path with multipletranslations.We firstopen the node

correspondingto thein!t!alpositionof the robot and identifythe Window Edges w.r.t,the z

presentposition.A convex decomposition of non-conVex faces_scarriedout, priorto the •

construction of the PCOTZ. We then identify the Window Corners on these Window Edges,

using the technique described i_ Subsection 3.3. It is then determined if the Window Corner
is reachable with a coUis_0n-free translation, w.r.t, the P6'OTZ. These reachable Window •

Corners are then successively opened until there are no reachable Window Corners, which

are unreachable from any previously visited Window Corners on the same Window Edge _

(or until the goal position is reached). As each reachable Window Corner is opened, we I
also check whether the goal position is reachable from the present position. Alongside, a

Window Edge(WE) .Treeis built whose nodes are the reachable segments on Window Edges __

LI{S, G}, and whose edges denote the traversability between the Window Edges which are •

connected. Thus, a breadth-first search ripples out, to cover the finite search space. From

a C-space perspective, the )42C algorithm restricts the search process to only a subset of the Z

convez edges of the corresponding C-space representation. "

3.5.4 3D WC Algorithm for Feasible Paths _=

1. Initialize OPEN ,-- Oecoa; GOAL = FALSE;

/*_n is the current position of R on some Window Edge segment et

Construct the PCOg;

if FEAS((G- if- a),PCO'g) then GOAL = TRUE;

Identify the Window Edges and Window Corners;

for each Window Corner c, on some Window Edge segment e2,

{

if ((FEAS(f- _,79C07_) and edge (et,e2) ¢ },V£-Tree))

then {(OPEN _ OPEN Uc); add edge (el,e2) to )42£.Tree;}

*/

2. do {

3. for each node, n E OPEN

4.{

5.

6.

7.

8.

9.

10.

11.

12. }

13. OPEN ,---OPEN \ n;

14. }

15. } while (GOAL =-- FALSE);
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3.5.5 Discussion

The nodes in the Wg- Tree correspond to the reachable Window Corners on Window Edges.
Let the number of nodes in the finalWg-Tree= k; 1 < k < u: u =O(m_). Hence, the

Wg-Tree can consist of O(m 2) edges, since each reachable segment is only visited once. The

n arbitrary faces of a polyhedron with O(n) edges, can be decomposed into an O(n) convex

faces since each convex face could be bounded by at least one of the original polyhedron's

edges. Hence, the number of constraint cones in the PC'E, is O(m).

Theorem 12 The WC algorithm constructs the W£-Tree and solves the FeasiblePath prob-

lem in time O(rnS).

Proof: At each reachable position, an O(m 2) vectors of the Window Corners, are tested

for feasibility with respect to the 79C7_. Since the P_7_ consists of an O(m) PCOs, the total

test at each node takes O(m 3) time. Since, in the worst case, an O(m 2) nodes are opened,

the entire algorithm takes O(m s) time to construct the Wg-Tree and solve the FeasblePath

problem.
Q.E.D. I::1

Let n be the number of vertices in the typical C-space representation of the problem.

The WC algorithm is expected to be faster than any C-space based method since, in the

worst case, n = O(m 3) (Latombe[7], Sharir[13]). This algorithm thus avoids the O(m 3)

time required to build the boundary description of C-space. Further, any C-space based

algorithm is applicable to the 79CO7_, since the C-space boundary can be computed from

thePC_.

1

ii :

3.6 Results
-_..

The 3D Window Corner (WC) Algorithm,forplanning translationalpaths,has been imple-

mented in the C language.The program has been testedon severalpath planning examples

on SUN SPARCstation 330 and IBM RISC 6000 machines. The input to the program

consistsof the descriptionof R and @ in terms of the bounding faces,edges and vertices.

The initialand finalconfigurationsof R are alsogiven.The program startsby computing

the "PC_ descriptionof the problem. The initialpositionof R correspondsto the origin,

OI,¢oR. This positionalsocorrespondstothe rootnode of the Wg-Tree. From the present

position,allthe polyhedralconvex cones which form the PCT_ are generated,and allthe

Window Edges are identified.These cones are used to determine the reachabilityof each

of the candidate Window Corners which are generated by the pair-wiseintersectionof the

Window Edges. The reachableWindow Corners are then appended to a listOPEN, which

consistsof allconfigurationsof R that have to explored further.This processiteratesre-

cursively,over each of the unexplored nodes inOPEN untileitherthe goal configurationis

reachablefrom the presentnode or OPEN does not containany new nodes. This isequiv-

aientto a breadth-firstsearchand other techniquessuch as best-firstor A ° could be used

to significantlyimprove the performance.In thatcase,a heuristicevaluationfunctioncould

be definedwhich gives,in some sense,the proximityof a node to the goal configuration.

The. WC algorithms is an example of the roadmap approach. The Wg-Tree has to

be built only once for a given robot R, and obstacles, _. Thereafter, for any start-goal
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pair, the FeasiblePath problem can be solved simply, by connecting each of the terminal

configurations to at least one of the Window Edges that are represented in the WE-Tree.

We present the results of applying the 3D FFC Algorithm to several assembly path

planning problems. The graphic outputs are snapshots of dynamic demos which have been

prepared. These demos are currently being displayed in a simple, portable MATLAB envi-

ronment with the aid of additional programs that have been written to enable the viewing

of 3D objects in motion, using a 2D MATLAB graphics display.

The performance of the program has been found to be satisfactory. However, problems

of accuracy and robustness due to finite-precision arithmetic [20] could arise while the

geometric (largely vector-based) operations are being carried out. A practical approach

would be to "grow" the PCOR obstacles by an extremely small amount (say, an order of

magnitude, or two, less than typical tolerance limits), before applying the algorithm. In

this case, the algorithm would (theoretically) no longer be guaranteed to find a path if

one exists, but any path that is reported will be guaranteed to be col£ision-free. This is

equivalent to restricting the motion of R, so that it maintains a minimum safety distance

from every obstacle.

3.6.1 A Cube in a Box Assembly

The initial configuration of this assembly consists of a cube which is placed in a box, Figure

10. The box has an opening on it's top face. The 3D WC Algorithm was used to plan a

path which would move the cube to agoal configur__a_ti0n which has the cube outside and
under the box, such that the top face of the cube is in planar contact with the lower face of

the box. The feasible path found consisted of 5 motions. Of these, 3 were contact-motions

and 2 were free-motions.

3.6.2 A Peg in a Blind-Hole Assembly
==

A cylindrical peg (shaft) is initially inserted into a blind-hole on the top face of a block.

The blind-hole runs about two thirds of the height of the block. The 3D WC Algorithm

was used to plan a path which removed the peg from the hole and placed it on the table

(which is assumed to be supporting the block). Figure 11 shows the 2 contact-motions and
1 free-motion which were involved.

3.6.3 A Knuckle Joint Assembly

A polyhedral version of a knuckle joint assembly was designed. This assembly has five

parts: the fork, eye, pin, collar and the taper-pin, all shown in Figure 12. The five parts

are initially arranged on a table (assumed). The assembly process assumes that the fork is

stationary while the rest are mobile. The 3D )4/C Algorithm was used to successively plan

paths for the four assembl_y motions which are required to form the completed assembly.

Figure i3 shows the assembly path computed for assembling the eye with the fork. Figure

14 shows the completed knuckle joint assembly. The remaining assembly motions which

were computed, have not been shown due to space limitations.
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A disassembly path computed by the Window Comer Algorithm
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Figure 10: Dissssembly Psth for s Cube in s Box Assembly, computed by the 3D WC

A/gorithm: 3 contact-motions, 2 free-motions
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Assembly motions for a cylinder, using the Window Comer Algorithm
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Parrs of a KNUCKLE JOINT ASSEMBLY: FORK. EYE, PIN, COLLAR. TAPER-PIN
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Figure 12: Pro-isof s Knuckle JointAssembly
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The EYE has been _scmb[ed with the FORK: free_motion(I), conr.act_motion(t)

F_m 13: Assembly Path Planning fora Knuckle JointAssembly, using the 3D WC Algo-

rithm
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3.7 Minimum Distance between Non-convex Polyhedra

We show how the description of the PCOT_ can be used to compute the minimum dis-

tance between the robot and obstacle boundaries. This problem frequently arises in robot

motion planning and collision avoidance problems. The methods proposed in the litera-

ture (Bobrow[15], Gilbert et al [16]) deal with convex polyhedra and utilize mathematical

programming techniques. These algorithms were applicable to the non-convex case by con-

sidering the convex decompositions of 3D polyhedra, resulting in O(m) time algorithms

(without including the preprocessing time required for the 3D convex decomposition).

We can compute the minimum distance between O_co_ and a face of the PCOs in

constant time. Since there are an O(m) 79¢0s, the minimum distance between the robot

and obstacle boundaries can be computed in O(m) time. An intersection between the robot

and obstacle boundaries is equivalent to 07_co_z being located inside at least one of the

PCOs, and hence can be detected in O(m) time.

Our algorithm is efficient for analytically computing the minimum distance between the

boundaries of non-convex polyhedra, since it can be computed in O(m) time and does not

require the expensive convex decomposition of 3D polyhedra.

4 Conclusions

We have presented the correct and complete "WC algorithm which searches for, transla-

tional paths among polyhedral subasemblies, even when the amount of free space tends to

be severely limited. Polyhederal cones are used to represent geometrical translational con-

stralnts between the robot and obstacle boundaries and to support accurate and efficient

reachabifity tests. We i_ntroduc_ +Window Corners and Window Edges in the Polyhedral

Cone Representation (PCT_) and this resulted in reducing the search space. Only a single

connected component of the reachable space containing the initial placement of the moving

object is searched. In two dimensions, a Window Graph with k nodes and O(k 2) edges, is

built, and the shortest path found, in O(kmlog(m)) time where m is the product of the

number of vertices describing the robot and obstacles respectively, k = O(m) in the worst

case mid 1 < k < (m + 2). In addition, we utilize the concept of a Polyhedral Cone Obstacle

Representation (7_C07£) which transforms the problem, in O(m) time, into that of a point

moving amongst a collection, O(m), of convex prism-shaped obstacles (in E 2 and E3).

In three dimensions, The 3D Window Corner 3D (}41C) algorithm constructs a Window

Edge (WE)- Tree in time O(mS). We search for feasible paths in a hierarchical manner. The

algorithm determines the feasibility of incremental motion by using contact information

only. Next, the feasibility of straight-line, and' mutiple-step, assembly paths are evaluated.

The low time complexity as a result of a finite search space, makes the FeasiblePath problem

widely applicable, since many robotic applications would prefer fast computation of feasible

paths, over exponential time for (continuous search space) shortest path algorithms. This

trade-off is attractive for real-time operations such as telerobotic maintenance and repair,

and for path planning during assembly sequence planning.

Since the B-rep. of the C-space obstcates is not constructed, both algorithms are effi-

cient compared to path planners which first construct the (C)-space, an operation requiring

time (aJtd worst-case number of vertices) O(m 2) and O(m 3) in planar and polyhedral ver-
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sions,respectively.Collectively,the above aspects resultin algorithms which search for

feasiblepaths based on visitingWindow Corners only,and which can be implemented with

ease in a wide range of roboticand assembly sequence planning situations.In addition,

we showed how the 79CO7_ can be used to efficientlycompute the minimum distancebe-

tween the boundariesof a pairofnon-convex 3D polyhedra,without requiringa 3D convex

decomposition. Resultsobtained for planar and polyhedralassembly path problems were

presented.
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